IV.C. ACID-BASE BALANCE

C.a. IMPORTANCE OF pH

proper pH is required for 1) membrane excitability, 2) enzyme function, 3) chemical reactions, 4) electrolyte concentrations

C.b. MECHANISMS OF ACID-BASE BALANCE C.b.A. CONCEPTS

acids dissociate into H⁺ & some anion

strong acids dissociate readily into H⁺ & the anion -> /// H⁺ in solution weak acids dissociate only slightly into H⁺ & the anion -> / H⁺ in solution

<u>bases</u> accept/remove H⁺ from solution strong bases readily remove H⁺ -> /// H⁺ in solution weak bases minimally remove H⁺ -> / H⁺ in solution

pH = negative log of H⁺ concentration

range is from 0 to 14

a pH of $0 = 1g H^+/\ell$ solution $= 6.023x10^{23} H^+/\ell \ell$ soln; if the soln were H₂0, this is equivalent to 1 out of 55 H₂0 molecules being <u>dissociated</u> a pH of $7 = 6.023x10^{16} H^+/\ell \ell$ soln $(10^{23}x10^{-7})$; if the soln is H₂0, this means 1 out of 550,000,000 H₂0 molecules is dissociated. Since pH of extracellular body fluids is normally 7.35-7.45, the H⁺ concentration is *very*, *very* small. (Na⁺ 40,000 X & K⁺ is 1000 X more abundant)

C.b.<u>B.</u> METABOLIC ACID PRODUCTION

cellular respiration using <u>complete</u> oxidation~catabolism w <u>glucose & other carbohydrates</u> as high-energy electron source $-> C0_2$ & the <u>volatile acid</u>, H_2C0_3 , both of which are removed by the <u>lungs</u>

cellular respiration using oxidation~catabolism w <u>proteins & fats</u> or <u>incomplete oxidation</u> of carbohydrates as high-energy electron source —> <u>fixed~nonvolatile</u> acids which are metabolized by the <u>liver</u> & removed by the <u>kidneys</u>

C.b.B.a. VOLATILE ACID PRODUCTION

if
$$\uparrow CO_2$$
: $\uparrow CO_2 + H_2O \rightarrow / H_2CO_3 \rightarrow / H^+ + / HCO_3^-$ (E2)

if
$$\downarrow C0_2$$
: $\downarrow C0_2 + H_2O \rightarrow / H_2C0_3 \rightarrow / H^+ + / HC0_3^-$ (E3)

C.b.B.b. FIXED ACID PRODUCTION

lipid oxidation -> ketoacids & phosphoric acid
protein oxidation -> sulfuric acid
incomplete oxidation of carbohydrates -(1)-> lactic acid

| starvation, diabetes (normal total = 50-100 mmol/day; immediately buffered to sodium salt of acid) | anaerobic (Key: 1: CF III.A.-2: cellular respiration)

C.b.B.b.(A.) COMPENSATION

If ↑ H⁺ is from ↑ fixed acid production, ->

$$\uparrow$$
 (H⁺ + HC0₃⁻ -> H₂C0₃) \uparrow > \downarrow HC0₃⁻ (E4)

If \downarrow H⁺ is from \downarrow in fixed acid production, \rightarrow

C.b.C. CALCULATION OF PLASMA pH

extracellular fluid pH = f(extent of H_2CO_3 dissociation & <u>ratio</u> HCO_3 ::: CO_2 where both are expressed in $mMoI/\ell$)

pH = pK (H_2CO_3 buffer = 6.1 at normal body temps) + log $\underline{HCO_3}/\!/CO_2$ (modified Henderson-Hasselbach equation) (E6) (example: normal ratio of $\underline{HCO_3}/\!/CO_2 = \underline{20::1} = 20$; log 20 = 1.3 \therefore normal pH = 6.1 + 1.3 = 7.4)

ratio < 20:1 -> / plasma pH;

reverse when ratio > 20:1

C.b.D. REGULATION OF pH

- 1) intracellular & extracellular acid-base buffering systems: rapid response (moment by moment), but very crude
- 2) respiratory elimination of C02: fairly rapid response (minutes) but loses its ability to regulate pH as pH nears normal
- 3) renal elimination of H⁺ or HC0₃⁻: slow (hours days) but continues until pH is returned to normal/near normal

C.b.<u>D.a.</u> MAJOR ACID-BASE BUFFERING SYSTEMS

C.b.<u>D.a.</u>(A.) HCO₃ BUFFERING SYSTEM

strong acid + weak base -> weak acid + salt e.g.:

HCl + NaHC0₃ -> H₂C0₃ + NaCl

strong base + weak acid -> weak base + H₂0 e.g.:

Na0H + H₂CO₃ -> NaHCO₃ + H₂O

(plasma buffer & interstitial fluid buffer) (F 16.17, p 438) (TP IVC-1)

C.b.D.a.(B.) PHOSPHATE BUFFERING SYSTEM

strong acid + weak base -> weak acid + salt e.g.: HCl + Na₂HPO₄ -> NaH₂PO₄ + NaCl strong base + weak acid -> weak base + H₂0 e.g.: Na0H + NaH₂P0₄ -> Na₂HP0₄ + H₂0

(especially important as a filtrate buffer in renal tubules, e.g. see T IVB-2, footnote b & F 16.19, p 439), but also as intracellular buffer

TP IVC-2 TP IVC-1 (F 16.17, p 438)

C.b.D.a.(C.) PROTEIN BUFFERING SYSTEM

TP IVC-3

aa-H <-> aa + H (F 12.7, p 312)

TP IVC-

(especially important as an intracellular buffer) (Fig 16.17, p 436) but also works as plasma buffer (pp's)

C.b.D.b. RESPIRATORY CONTROL MECHANISMS

 $C0_2$ readily crosses blood-**CSF** barrier to **CSF** where it reacts w $H_2O \rightarrow H_2C0_3 \rightarrow H^+ + HC0_3^ H^+$ immediately stimulates respiratory center receptors in the 4th ventricle

C.b.D.c. RENAL CONTROL MECHANISMS

C.b.D.c.(A.) HYDROGEN ION & BICARBONATE ION COUNTERBALANCE (F 16.18, p 439, as modified) TP IVC-4

C.b.<u>D.c.</u>(B.) INTRATUBULAR BUFFERING SYSTEMS

phosphate buffering system (see C.b.D.a.(B.), above) ammonia buffering system (F 16.19, p 439) TP IVC-2

C.b.E. ION EXCHANGE MECHANISMS & THEIR EFFECTS ON pH

C.b.E.a. K⁺-H⁺ ION EXCHANGE (F 16.20, p 440 & 16.21, p 440) TP IVC-5)

C.b.E.b. CI-HC03 ION EXCHANGE (chloride shift, F 12.7, p 312) TP IVC-6

in plasma at tissue: \uparrow C0₂ –(E2)-> \uparrow HC0₃ -> \uparrow Cl into **RBC**; (at alveolus) \downarrow C0₂ –(E3)-> \downarrow HC0₃ -> \uparrow Cl into plasma **NB**: body Na⁺ levels can influence this exchange by combining w HC0₃

C.c. ALTERATIONS IN ACID-BASE BALANCE

C.c.A. GENERAL

Figure IVC-1. Conditions Ascribed to Variations in Fluid pH TP IVC-7

acidosis~acidemia = \downarrow alkali [biological bases involving an alkali metal such as Na⁺ or K⁺] or \uparrow acids alkalosis~alkalemia = \uparrow alkali or \downarrow acids

Since NaHC0 $_3$ is the main extracellular alkali, & since its concentration is determined by C0 $_2$ & HC0 $_3$ levels, these two compounds are normally the ones that are tracked in acidosis/alkalosis.

C.c.A.a. METABOLIC VERSUS RESPIRATORY ACID-BASE DISORDERS

metabolic a-b disorders ↑ or ↓ in H⁺ -(E4 & E5)-> ↓ or ↑ in HC0₃⁻-(E6)-> ↓ or ↑ in pH and metabolic acidosis or alkalosis, resp.

<u>respiratory</u> a-b disorders \uparrow or \downarrow in $\underline{CO_2}$ –(E2 & E3) –> \uparrow or \downarrow in $\underline{H_2CO_3}$ –(E6)–> \downarrow or \uparrow in pH and respiratory acidosis or alkalosis, resp.

C.c.A.b. PRIMARY VERSUS COMPENSATORY MECHANISMS

primary mechanism (event that initiates alkalosis or acidosis)

compensatory mechanism (mechanism that attempts to maintain a homeostatic pH)

primary & compensatory cannot involve the same systems, ... lungs can correct for renal induced changes & vice versa

compensatory mechanisms become more effective w/ time, thus there are differences between the levels of pH changes that occur in acute acid-base disorders versus those that occur in chronic acid-base disorders

C.c.A.c. GENERAL MANIFESTATIONS OF ACID-BASE DISORDERS

- 1) those associated w/ the primary disorder
- 2) those related to the altered pH:

Path IVC-1. Pathophysiological Consequences of Acidemia & Alkalemia on Nerve-Muscle Excitability HWA

3) those related to the homeostatic, compensatory mechanism

C.c.<u>B.</u> METABOLIC ACIDOSIS [=(E4)=> primary deficit in plasma bicarbonate] C.c.B.a. ETIOLOGIC FACTORS

1) increased metabolic acid gain by increased production of nonvolatile acids OR decreased renal secretion of acids (S IV.C.b.B.b.)

2) elevated (excessive) HC0₃ loss

C.c.B.b. INCREASED METABOLIC ACID GAIN

1) \(\frac{\tancold}{\tancold}\) (or conserve bicarbonate)

$$1,2,3 \Rightarrow / H^{+}$$
 $HC0_{3}$
 $HC0_{3}$
 $HC0_{3}$
Key: 1: E₄

Path IVC-2. General Relationship of Decreased pH to Decreased Bicarbonate Concentration

C.c.<u>B.b.</u>(B.) KETOACIDOSIS C.c.<u>B.b.</u>(B.a.) KETOGENESIS

Critical Path IVC-4. Metabolic Pathways Triggered by Low Cellular Glucose Levels (14, pp 552 & 831) (SN 164, p376)

```
KEY: 1: CP IVC-4: condition 1a (cortisol) effective & OOA path
                                       (1)=> <ketoacidosis>
low carbo-
                                                                                                 2: CP IVC-4: condition 1c (glucagon) effective 3: CP IVC-4: condition 1c (glucagon) ineffective
hydrate diet
                     blood sugar =
                         glycemia)
                                                                                                 5. CP IVC-4: ↑ Jb & 1c, ↑ thyroid H & glucagon paths
6: CF IVC-2: ↓ glycogenolysis & gluconeogenesis
7: CP IVC-4: hypoglycemia → / acetyl co-A production
starvation
                                            / glycogen)=T=(3)=> HYPOGLYCEMIA
                                                            厅(1)=> <ketoacidosis>
ID diabetes mellitus =(4)=> / insulin => / glucose into
                                                                                                                  & / acetyl co-A use -> <ketoacidosis>
                                                            (5)=> HYPERGLYCEMIA
                                                     -> / vomiting -> / water loss
                > / water intake
                                                                                                                            <alcoholic ketoacidosis>
                                                                                                      ketones
alcoholism =+> / alcohol intake =??+> /
                                            thyroid hormone
                                         > oxidation of alcohol by liver -> / acetyl co-A =
                 / food intake
HWA
Path IVC-5. Etiology of Ketoacidosis
```

C.c.B.c. MANIFESTATIONS OF METABOLIC ACIDOSIS [plasma HC03 < 20 mEq//ℓ]

```
KEY: 1: CP IVA-9: fluid vol deficit
2: F 16.20: H<sup>+</sup>-K<sup>+</sup> inter-intra-cellular exchange
3: P IVB-4: 2 -> 2° / intracellular K<sup>+</sup> -> 4
4: P IVC-1: hyperpolarization
                        w/ fluid deficit -(1)
                                                       > loss of tissue turgor
                                                                                                                                               4. F IVC-1: hyperpolarization
5: CP V.D.-2: / sympathetic --> / parasymp
6: S VI.D: control of cardiac function
7: E4, p IVC-1: compensation
                         (2,3,4)-> ANOREXIA
                                                       / responsiveness to ¬¬(5)=> WARM, FLUSHED SKIN
                       (pH < 7.35)=(2,3,4)=> sympathetic input
                                                                                          > / HBR -> / CO
                                                                                                                        (6)=> HEART FAILURE
<metabolic
    acidosis>
                       =(pH = 7.0)=(6)= cardiac dysrhythmias
                                                                                                                                              8: S IVC.b.\underline{D.b}.: respiratory control mechanism 9: S IVC.b.\underline{B.a.}: H_2CO_3 is volatile
                                                             extracellular HC0_3^- (serum HC0_3^- < 25 mEq//\ell)
                                                                                              (8)=> / ventilation => KUSSMAUL'S BREATHING =(9)=> / H<sub>2</sub>CO<sub>3</sub>
                                                                                                                              (similar to hyperpnea of exercise)
                                                                                                                                             10: F 16.18, p 439, ↑ plasma H+ -> / urine H+
                                                                       kalemia>
                                                                                                                                             11: S IVC.b.<u>D.a.</u>(B) phosphate buffering system 12: S IVC.b.<u>D.a.</u>(B) ammonia buffering system
                                                   11)=> / utilization of phosphate buffer system in kidneys
                                                      NH<sub>3</sub> in urine)=(12)=> // NH<sub>4</sub><sup>+</sup> IN URINE (secondary buffer system in kidneys)
HWA
Path IVC-6. Manifestations of Metabolic Acidosis
```

C.c.C. METABOLIC ALKALOSIS [primary ↑ in plasma HCO₃]

C.c.C.a. LOSS OF HYDROGEN IONS

```
1 mEq H<sup>+</sup> secreted added to plasma into duodenum into duo
```


Figure IVC-3. Mechanism of HCl Secretion from Parietal Cell of Gastric Gland TP IVC-10

```
prolonged vomiting prolonged vomiting prolonged vomiting prolonged vomiting nasogastric suction — (1) | (1) | (1) | (2) | (2) | (3) | (4) | (2) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4) | (4)
```

C.c.C.b. ELEVATED HC03 RETENTION

two sources of HC03⁻: C02 from cellular respiration [-(E1)-> HC03⁻] or HC03⁻ recycling by kidneys (F 16.18, p 439)

these two mechanisms normally work inversely to maintain a homeostatic HC03⁻ level

TP IVC-11

Path IVC-9. Etiology of Increased Bicarbonate Retention in Metabolic Alkalosis

C.c.D. RESPIRATORY ACIDOSIS [primary 1 in plasma carbonic acid]

1) primary \uparrow in C0₂ –(E2)-> / H₂C0₃ -> / H⁺

C.c.D.a. ACUTE RESPIRATORY ACIDOSIS

```
hypoventilation \Rightarrow / P_{C02} ( \Rightarrow / P_{C02
```

C.c.D.b. CHRONIC RESPIRATORY ACIDOSIS

C.c.<u>E.</u> RESPIRATORY ALKALOSIS [primary ↓ in plasma carbonic acid]

1) primary \downarrow in C0₂ –(E3)–> / H₂C0₃ -> / H⁺

2) hyperventilation => / removal of
$$C0_2 = (E3)$$
 H_2C0_3 is volatile

C.d. SUMMARY

ALKALOSIS (/ pH)

Respiratory (changes in
$$H_2CO_3$$
) $\stackrel{\bar{f}}{\underline{}}$ $CO_2 => / \frac{H_2CO_3}{\underline{}} => / H^+$ E2
$$\stackrel{\underline{\downarrow}}{\underline{}}$$
 $CO_2 => / \frac{H_2CO_3}{\underline{}} => / H^+$ E3
$$ALKALOSIS (/ pH)$$