IV.C. ACID-BASE BALANCE ## C.a. IMPORTANCE OF pH proper pH is required for 1) membrane excitability, 2) enzyme function, 3) chemical reactions, 4) electrolyte concentrations # C.b. MECHANISMS OF ACID-BASE BALANCE C.b.A. CONCEPTS acids dissociate into H⁺ & some anion strong acids dissociate readily into H⁺ & the anion -> /// H⁺ in solution weak acids dissociate only slightly into H⁺ & the anion -> / H⁺ in solution <u>bases</u> accept/remove H⁺ from solution strong bases readily remove H⁺ -> /// H⁺ in solution weak bases minimally remove H⁺ -> / H⁺ in solution pH = negative log of H⁺ concentration range is from 0 to 14 a pH of $0 = 1g H^+/\ell$ solution $= 6.023x10^{23} H^+/\ell \ell$ soln; if the soln were H₂0, this is equivalent to 1 out of 55 H₂0 molecules being <u>dissociated</u> a pH of $7 = 6.023x10^{16} H^+/\ell \ell$ soln $(10^{23}x10^{-7})$; if the soln is H₂0, this means 1 out of 550,000,000 H₂0 molecules is dissociated. Since pH of extracellular body fluids is normally 7.35-7.45, the H⁺ concentration is *very*, *very* small. (Na⁺ 40,000 X & K⁺ is 1000 X more abundant) ## C.b.<u>B.</u> METABOLIC ACID PRODUCTION cellular respiration using <u>complete</u> oxidation~catabolism w <u>glucose & other carbohydrates</u> as high-energy electron source $-> C0_2$ & the <u>volatile acid</u>, H_2C0_3 , both of which are removed by the <u>lungs</u> cellular respiration using oxidation~catabolism w <u>proteins & fats</u> or <u>incomplete oxidation</u> of carbohydrates as high-energy electron source —> <u>fixed~nonvolatile</u> acids which are metabolized by the <u>liver</u> & removed by the <u>kidneys</u> ### C.b.B.a. VOLATILE ACID PRODUCTION if $$\uparrow CO_2$$: $\uparrow CO_2 + H_2O \rightarrow / H_2CO_3 \rightarrow / H^+ + / HCO_3^-$ (E2) if $$\downarrow C0_2$$: $\downarrow C0_2 + H_2O \rightarrow / H_2C0_3 \rightarrow / H^+ + / HC0_3^-$ (E3) #### C.b.B.b. FIXED ACID PRODUCTION lipid oxidation -> ketoacids & phosphoric acid protein oxidation -> sulfuric acid incomplete oxidation of carbohydrates -(1)-> lactic acid | starvation, diabetes (normal total = 50-100 mmol/day; immediately buffered to sodium salt of acid) | anaerobic (Key: 1: CF III.A.-2: cellular respiration) ## C.b.B.b.(A.) COMPENSATION If ↑ H⁺ is from ↑ fixed acid production, -> $$\uparrow$$ (H⁺ + HC0₃⁻ -> H₂C0₃) \uparrow > \downarrow HC0₃⁻ (E4) If \downarrow H⁺ is from \downarrow in fixed acid production, \rightarrow ## C.b.C. CALCULATION OF PLASMA pH extracellular fluid pH = f(extent of H_2CO_3 dissociation & <u>ratio</u> HCO_3 ::: CO_2 where both are expressed in $mMoI/\ell$) pH = pK (H_2CO_3 buffer = 6.1 at normal body temps) + log $\underline{HCO_3}/\!/CO_2$ (modified Henderson-Hasselbach equation) (E6) (example: normal ratio of $\underline{HCO_3}/\!/CO_2 = \underline{20::1} = 20$; log 20 = 1.3 \therefore normal pH = 6.1 + 1.3 = 7.4) ratio < 20:1 -> / plasma pH; reverse when ratio > 20:1 ## C.b.D. REGULATION OF pH - 1) intracellular & extracellular acid-base buffering systems: rapid response (moment by moment), but very crude - 2) respiratory elimination of C02: fairly rapid response (minutes) but loses its ability to regulate pH as pH nears normal - 3) renal elimination of H⁺ or HC0₃⁻: slow (hours days) but continues until pH is returned to normal/near normal ## C.b.<u>D.a.</u> MAJOR ACID-BASE BUFFERING SYSTEMS C.b.<u>D.a.</u>(A.) HCO₃ BUFFERING SYSTEM strong acid + weak base -> weak acid + salt e.g.: HCl + NaHC0₃ -> H₂C0₃ + NaCl strong base + weak acid -> weak base + H₂0 e.g.: Na0H + H₂CO₃ -> NaHCO₃ + H₂O (plasma buffer & interstitial fluid buffer) (F 16.17, p 438) (TP IVC-1) ## C.b.D.a.(B.) PHOSPHATE BUFFERING SYSTEM strong acid + weak base -> weak acid + salt e.g.: HCl + Na₂HPO₄ -> NaH₂PO₄ + NaCl strong base + weak acid -> weak base + H₂0 e.g.: Na0H + NaH₂P0₄ -> Na₂HP0₄ + H₂0 (especially important as a filtrate buffer in renal tubules, e.g. see T IVB-2, footnote b & F 16.19, p 439), but also as intracellular buffer TP IVC-2 TP IVC-1 (F 16.17, p 438) ## C.b.D.a.(C.) PROTEIN BUFFERING SYSTEM ## TP IVC-3 aa-H <-> aa + H (F 12.7, p 312) TP IVC- (especially important as an intracellular buffer) (Fig 16.17, p 436) but also works as plasma buffer (pp's) ### C.b.D.b. RESPIRATORY CONTROL MECHANISMS $C0_2$ readily crosses blood-**CSF** barrier to **CSF** where it reacts w $H_2O \rightarrow H_2C0_3 \rightarrow H^+ + HC0_3^ H^+$ immediately stimulates respiratory center receptors in the 4th ventricle #### C.b.D.c. RENAL CONTROL MECHANISMS C.b.D.c.(A.) HYDROGEN ION & BICARBONATE ION COUNTERBALANCE (F 16.18, p 439, as modified) TP IVC-4 ## C.b.<u>D.c.</u>(B.) INTRATUBULAR BUFFERING SYSTEMS phosphate buffering system (see C.b.D.a.(B.), above) ammonia buffering system (F 16.19, p 439) TP IVC-2 #### C.b.E. ION EXCHANGE MECHANISMS & THEIR EFFECTS ON pH C.b.E.a. K⁺-H⁺ ION EXCHANGE (F 16.20, p 440 & 16.21, p 440) TP IVC-5) C.b.E.b. CI-HC03 ION EXCHANGE (chloride shift, F 12.7, p 312) TP IVC-6 in plasma at tissue: \uparrow C0₂ –(E2)-> \uparrow HC0₃ -> \uparrow Cl into **RBC**; (at alveolus) \downarrow C0₂ –(E3)-> \downarrow HC0₃ -> \uparrow Cl into plasma **NB**: body Na⁺ levels can influence this exchange by combining w HC0₃ #### C.c. ALTERATIONS IN ACID-BASE BALANCE C.c.A. GENERAL Figure IVC-1. Conditions Ascribed to Variations in Fluid pH TP IVC-7 acidosis~acidemia = \downarrow alkali [biological bases involving an alkali metal such as Na⁺ or K⁺] or \uparrow acids alkalosis~alkalemia = \uparrow alkali or \downarrow acids Since NaHC0 $_3$ is the main extracellular alkali, & since its concentration is determined by C0 $_2$ & HC0 $_3$ levels, these two compounds are normally the ones that are tracked in acidosis/alkalosis. ## C.c.A.a. METABOLIC VERSUS RESPIRATORY ACID-BASE DISORDERS metabolic a-b disorders ↑ or ↓ in H⁺ -(E4 & E5)-> ↓ or ↑ in HC0₃⁻-(E6)-> ↓ or ↑ in pH and metabolic acidosis or alkalosis, resp. <u>respiratory</u> a-b disorders \uparrow or \downarrow in $\underline{CO_2}$ –(E2 & E3) –> \uparrow or \downarrow in $\underline{H_2CO_3}$ –(E6)–> \downarrow or \uparrow in pH and respiratory acidosis or alkalosis, resp. ## C.c.A.b. PRIMARY VERSUS COMPENSATORY MECHANISMS primary mechanism (event that initiates alkalosis or acidosis) compensatory mechanism (mechanism that attempts to maintain a homeostatic pH) primary & compensatory cannot involve the same systems, ... lungs can correct for renal induced changes & vice versa compensatory mechanisms become more effective w/ time, thus there are differences between the levels of pH changes that occur in acute acid-base disorders versus those that occur in chronic acid-base disorders ## C.c.A.c. GENERAL MANIFESTATIONS OF ACID-BASE DISORDERS - 1) those associated w/ the primary disorder - 2) those related to the altered pH: Path IVC-1. Pathophysiological Consequences of Acidemia & Alkalemia on Nerve-Muscle Excitability HWA 3) those related to the homeostatic, compensatory mechanism C.c.<u>B.</u> METABOLIC ACIDOSIS [=(E4)=> primary deficit in plasma bicarbonate] C.c.B.a. ETIOLOGIC FACTORS 1) increased metabolic acid gain by increased production of nonvolatile acids OR decreased renal secretion of acids (S IV.C.b.B.b.) 2) elevated (excessive) HC0₃ loss ## C.c.B.b. INCREASED METABOLIC ACID GAIN 1) \(\frac{\tancold}{\tancold}\) (or conserve bicarbonate) $$1,2,3 \Rightarrow / H^{+}$$ $HC0_{3}$ $HC0_{3}$ $HC0_{3}$ Key: 1: E₄ Path IVC-2. General Relationship of Decreased pH to Decreased Bicarbonate Concentration C.c.<u>B.b.</u>(B.) KETOACIDOSIS C.c.<u>B.b.</u>(B.a.) KETOGENESIS Critical Path IVC-4. Metabolic Pathways Triggered by Low Cellular Glucose Levels (14, pp 552 & 831) (SN 164, p376) ``` KEY: 1: CP IVC-4: condition 1a (cortisol) effective & OOA path (1)=> <ketoacidosis> low carbo- 2: CP IVC-4: condition 1c (glucagon) effective 3: CP IVC-4: condition 1c (glucagon) ineffective hydrate diet blood sugar = glycemia) 5. CP IVC-4: ↑ Jb & 1c, ↑ thyroid H & glucagon paths 6: CF IVC-2: ↓ glycogenolysis & gluconeogenesis 7: CP IVC-4: hypoglycemia → / acetyl co-A production starvation / glycogen)=T=(3)=> HYPOGLYCEMIA 厅(1)=> <ketoacidosis> ID diabetes mellitus =(4)=> / insulin => / glucose into & / acetyl co-A use -> <ketoacidosis> (5)=> HYPERGLYCEMIA -> / vomiting -> / water loss > / water intake <alcoholic ketoacidosis> ketones alcoholism =+> / alcohol intake =??+> / thyroid hormone > oxidation of alcohol by liver -> / acetyl co-A = / food intake HWA Path IVC-5. Etiology of Ketoacidosis ``` ## C.c.B.c. MANIFESTATIONS OF METABOLIC ACIDOSIS [plasma HC03 < 20 mEq//ℓ] ``` KEY: 1: CP IVA-9: fluid vol deficit 2: F 16.20: H⁺-K⁺ inter-intra-cellular exchange 3: P IVB-4: 2 -> 2° / intracellular K⁺ -> 4 4: P IVC-1: hyperpolarization w/ fluid deficit -(1) > loss of tissue turgor 4. F IVC-1: hyperpolarization 5: CP V.D.-2: / sympathetic --> / parasymp 6: S VI.D: control of cardiac function 7: E4, p IVC-1: compensation (2,3,4)-> ANOREXIA / responsiveness to ¬¬(5)=> WARM, FLUSHED SKIN (pH < 7.35)=(2,3,4)=> sympathetic input > / HBR -> / CO (6)=> HEART FAILURE <metabolic acidosis> =(pH = 7.0)=(6)= cardiac dysrhythmias 8: S IVC.b.\underline{D.b}.: respiratory control mechanism 9: S IVC.b.\underline{B.a.}: H_2CO_3 is volatile extracellular HC0_3^- (serum HC0_3^- < 25 mEq//\ell) (8)=> / ventilation => KUSSMAUL'S BREATHING =(9)=> / H₂CO₃ (similar to hyperpnea of exercise) 10: F 16.18, p 439, ↑ plasma H+ -> / urine H+ kalemia> 11: S IVC.b.<u>D.a.</u>(B) phosphate buffering system 12: S IVC.b.<u>D.a.</u>(B) ammonia buffering system 11)=> / utilization of phosphate buffer system in kidneys NH₃ in urine)=(12)=> // NH₄⁺ IN URINE (secondary buffer system in kidneys) HWA Path IVC-6. Manifestations of Metabolic Acidosis ``` C.c.C. METABOLIC ALKALOSIS [primary ↑ in plasma HCO₃] C.c.C.a. LOSS OF HYDROGEN IONS ``` 1 mEq H⁺ secreted added to plasma into duodenum duo ``` Figure IVC-3. Mechanism of HCl Secretion from Parietal Cell of Gastric Gland TP IVC-10 ``` prolonged vomiting prolonged vomiting prolonged vomiting prolonged vomiting nasogastric suction — (1) | (1) | (1) | (2) | (2) | (3) | (4) | (2) | (4) ``` ## C.c.C.b. ELEVATED HC03 RETENTION two sources of HC03⁻: C02 from cellular respiration [-(E1)-> HC03⁻] or HC03⁻ recycling by kidneys (F 16.18, p 439) these two mechanisms normally work inversely to maintain a homeostatic HC03⁻ level TP IVC-11 Path IVC-9. Etiology of Increased Bicarbonate Retention in Metabolic Alkalosis ## C.c.D. RESPIRATORY ACIDOSIS [primary 1 in plasma carbonic acid] 1) primary \uparrow in C0₂ –(E2)-> / H₂C0₃ -> / H⁺ ## C.c.D.a. ACUTE RESPIRATORY ACIDOSIS ``` hypoventilation \Rightarrow / P_{C02} (P_{C02 ``` ## C.c.D.b. CHRONIC RESPIRATORY ACIDOSIS ## C.c.<u>E.</u> RESPIRATORY ALKALOSIS [primary ↓ in plasma carbonic acid] 1) primary \downarrow in C0₂ –(E3)–> / H₂C0₃ -> / H⁺ 2) hyperventilation => / removal of $$C0_2 = (E3)$$ H_2C0_3 is volatile #### C.d. SUMMARY ALKALOSIS (/ pH) Respiratory (changes in $$H_2CO_3$$) $\stackrel{\bar{f}}{\underline{}}$ $CO_2 => / \frac{H_2CO_3}{\underline{}} => / H^+$ E2 $$\stackrel{\underline{\downarrow}}{\underline{}}$$ $CO_2 => / \frac{H_2CO_3}{\underline{}} => / H^+$ E3 $$ALKALOSIS (/ pH)$$