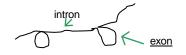
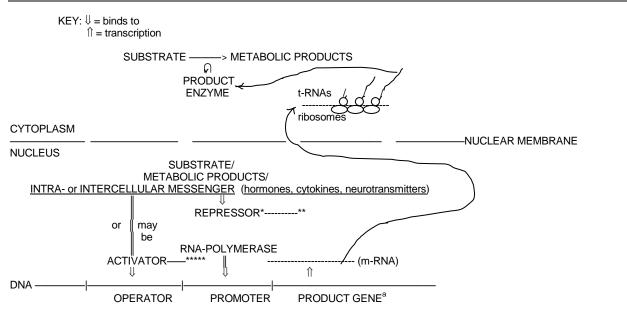
III.B - GENETIC CONTROL OF CELL FUNCTION, INHERITANCE & GENETIC DISORDERS


B.a. GENETIC CONTROL OF CELL FUNCTION

1) Gene [length of DNA responsible for a mean of 3 proteins]

2) Operon [length of DNA responsible for activity of several functionally-related genes]

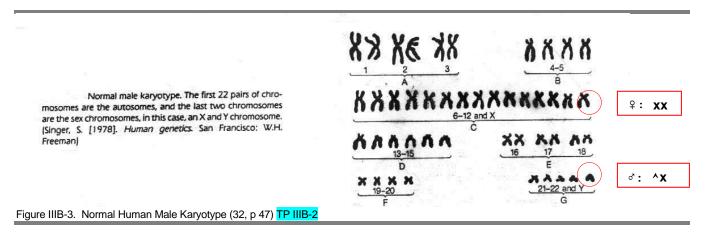
3) Genome [all the different genes in a cell (body)] (many in a given cell inactive)


4) Introns & exons (in an entire DNA molecule, only exons are transcribed into m-RNA)

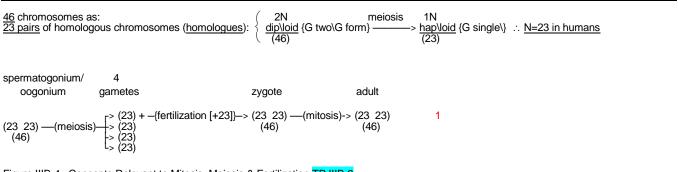
KEY: \Downarrow = binds to

**REPRESSOR has a domain that extends over the PROMOTER & prohibits RNA-polymerase from binding to it or if it does bind to it, from initiating transcription of product gene.

Figure IIIB-1. The Configuration of an Inactive Inducible Gene TP IIIB-1


*****ACTIVATOR includes a domain that extends into the PROMOTER & enhances the binding of <u>RNA-polymerase</u> to the PROMOTER. *REPRESSOR is probably the activator for its own PROMOTER/PRODUCT-GENE ^aPRODUCT GENE may include sequence for ACTIVATOR.

Critical Figure IIIB-2. The Configuration of an Active Inducible Gene TP IIIB-1


B.b. INHERITANCE B.b.<u>A.</u> CHROMOSOMES

- 1) Chromatin [the unwound DNA molecules in a cell when they are making proteins]
- 2) Chromosome [a tightly-wound macromolecule made of a single molecule of DNA & protein] (Ch's exist in pairs)

3) <u>Human Karyoltype</u> {G nucleus,nut\} [22 pairs of <u>autosomes</u> & 1 pair of <u>sex chromosomes</u>: XX = ♀; XY = ♂]

B.b.B. MEIOSIS, FERTILIZATION & MITOSIS

Figure IIIB-4. Concepts Relevant to Mitosis, Meiosis & Fertilization TP IIIB-3

1) Locus [position on chromosome where (product) gene is found] (Sci Am '96 46:198: ~ 256 genes necessary for prokaryotic cell, all others for specialization)

2) <u>Allele</u> [a form of the gene that produces a different product from other forms] (because chromosomes are paired, most genes occur in pairs. It is conceivable, therefore, that an individual could carry two different alleles for that gene; but most genes have only one allele. Some have a few alleles, w 1 being abundant in the population & the others being rare. In a very few genes, there are many alleles in the population, many of which occur in an appreciable proportion: <u>polymorphism</u> (8, p 79), <u>Human Genome Project</u>

tetrad~homologue~homologous pair 3	X X	separation & movement of
centromere y y y y synapsis {G a union}	X X	sister chromatids to
chromatid sister chromatids	X X	opposite poles
Figure IIIB-5. Terminology Relevant to the Tetrad (in Meiosis) TP IIIB-3		

In meiosis, <u>sister chromatids</u> are formed (DNA strands are replicated) & then homologous pairs undergo <u>synapsis</u> [line up side by side]. Then one member of one pair goes to one pole & the other member goes to the opposite pole in a process called <u>disjunction</u>.

B.b.C. PATTERNS OF INHERITANCE (Mendelian Inheritance)

Term	<u>Genotype</u>		
1) <u>Homo\zygous</u>	AA or aa		
{G same\G pair}			
2) <u>Hetero\zygous</u>	Aa		
{G different\}		<u>Phenotype</u>	
		{G appearance}	
1) <u>Dominant</u>	AA or Aa	A	
2) Incomplete Dominan	<u>ce</u> Aa	Aa	
3) <u>Codominance</u>	Aa	A & a	
3) <u>Recessive</u>	aa	а	
	Gametes, parent 1		
	A a		
	A AA Aa		
Gametes, parent 2			
	a Aa aa		

Figure IIIB-6. Terms Relevant to the Descriptions of Alleles & the Punnett Square TP IIIB-4

B.C. GENETIC & ENVIRONMENTAL DISORDERS

1) Hereditary source alone, 80%; environmental source w/ hereditary source, 20%

2) US incidence: 250,000/yr w physical or mental damage; 60,000 deaths due to birth defects//yr

B.c.<u>A.</u> GENETIC DISORDERS B.C.A.a. SINGLE GENE DISORDERS

1) Each of us carries 5-8 genes (out of 30,000) w/ a recessive allele for a genetic disorder; 4-6 are inherited, 1-2 are mutations 2) 4000 single-gene disorders, e.g.:

autosomal dominant: Marfan's syndrome

autosomal recessive: cystic fibrosis, PKU, sickle-cell disease

x-linked~sex-linked recessive: color blindness, hemophilia A, Duchenne muscular dystrophy

3) 1% of all adult admissions are due to single gene disorders

B.c.<u>A.a.</u>(A.) DISORDERS OF AUTOSOMAL INHERITANCE B.c.<u>A.a.</u>(A.a.) DISORDERS INVOLVING AUTOSOMAL DOMINANT GENES

1) Mutant gene \rightarrow defective structural or regulatory consequences

2) Later age of onset

3) Reduced penetrance: (20% penetrance = if have it, it will be expressed 20% of time -> skipped generations.)

4) Variable expressivity: 1 genotype -> several phenotypes TP IIIB-4a

B.c.A.a.(A.b.) DISORDERS INVOLVING AUTOSOMAL RECESSIVE GENES

1) Mutant gene -> defective enzyme

2) Early age of onset

3) ?Complete penetrance

4) Uniform expressivity

B.c.A.a.(A.c.) DISORDERS INVOLVING LETHAL AUTOSOMAL RECESSIVE GENES

As implied, aa is a lethal form, usually in utero. Aa is usually sublethal. (e.g. retinoblastoma P IIIC-2)

B.c.A.a.(B.) DISORDERS OF X-LINKED~SEX-LINKED INHERITANCE

1) X-linked [on the part of the X-chromosome not found on the Y-chromosome], therefore usually recessive:

		genotype:				phenotype:		
			Game X	etes, pa x	rent 1 defective allele			
	Comotos acresta	x	XX	Xx		ୁX	₽X	
	Gametes, parent 2	Y	XY	xY		ീX	∛x	
Figure IIIP 7 Duppett Square for Sev linked Character	riation TD IIID F							

Figure IIIB-7. Punnett Square for Sex-linked Characteristics TP IIIB-5

B.c.<u>A.a.</u>(C.) MANIFESTATIONS OF SINGLE GENE DISORDERS B.c.<u>A.a.</u>(C.a.) STRUCTURAL PROTEIN DEFECTS

1) Usually autosomal dominant

2) Because structural proteins are so widespread (e.g. connective tissue proteins), <u>effects are often systemic</u> w abnormalities showing up in several places.

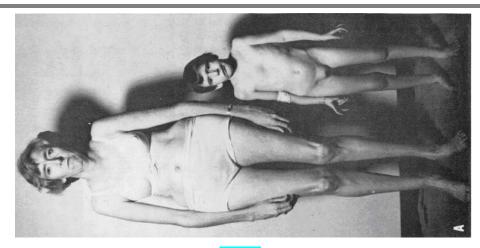


Figure IIIB-8. Mother & Daughter w/ Marfan Syndrome (6, p 168) TP IIIB-6

B.c.A.a.(C.b.) PRIMARY ENZYME DEFECTS

1) Usually autosomal recessive

2) Mechanisms:

a) Deficiency at some pt in metabolic pathway \rightarrow deficiency of end product

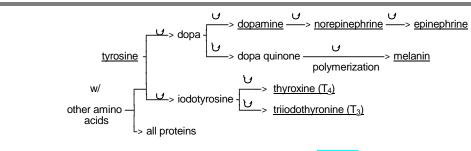
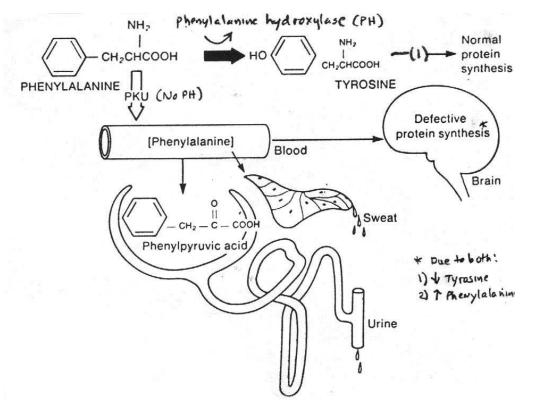



Figure IIIB-9. Products Involving Tyrosine Metabolism (7, pp 1221 & 1480) TP IIIB-7

b) Production of harmful intermediates or toxic by-products of metabolism

c) Accumulation of destructive substances due to ineffective enzyme (Fig IIIB-10)

KEY: 1: F IIIB-9: tyrosine essential to all proteins

Figure IIIB-10. Development of Phenylketonuria in the Absence of Phenylalanine Hydroxylase (5, p 33) TP IIIB-7

B.c.A.b. POLYGENIC DISORDERS

Several genes (# unknown) + proper environmental factors \rightarrow high expressivity

Include 1) congenital defects

cleft lip or palate, club foot, congenital heart disease, an\encephaly {G brain - no cerebrum}

2) post-partum defects

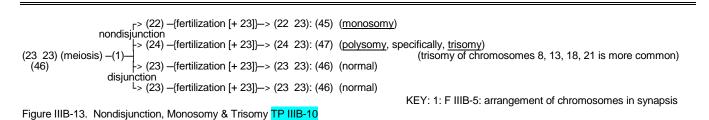
allergies, diabetes mellitus, essential hypertension

B.c.A.c. CHROMOSOME DISORDERS

Problems occur during duplication, synapsis & anaphase (PMAT)

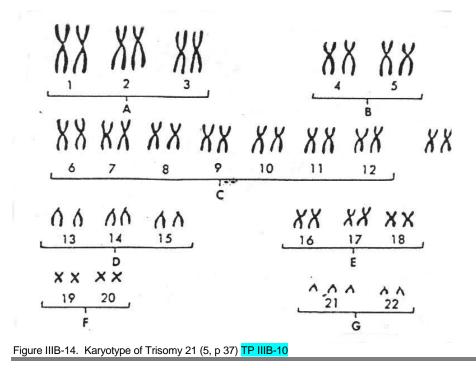
B.c.<u>A.c.(A.) ALTERATIONS OCCURRING DURING CHROMOSOME DUPLICATION (Replication)</u>

TP IIIB-8 -A T- -A T- -C G- -C G- -T A- -T A- -C G- -C G- -C A- T- -A -A T- -A T-	-A T- A T- -C G- T G- -T A- T A- -C G- C G- -C G- C G- -C G- A T-	<u>mutation</u> > defective m-RNA> wrong aa> defective 1° structure defective 3° structure> defective function
Figure IIIB-11. How an Error in Replicati	on can Lead to a Mutation	


1) <u>uncorrected mutation in meiosis</u> (i.e. parent did not have mutation) -> death of offspring, through congenital defect, to no effect at all 2) uncorrected mutation during mitosis -> two lines of cells (<u>mosaicism</u>) - vitiligo (loss of melanocytes) port wine stain

B.c.A.c.(B.) ALTERATIONS OCCURRING DURING SYNAPSIS AND DISJUNCTION (alterations in chromosome structure)

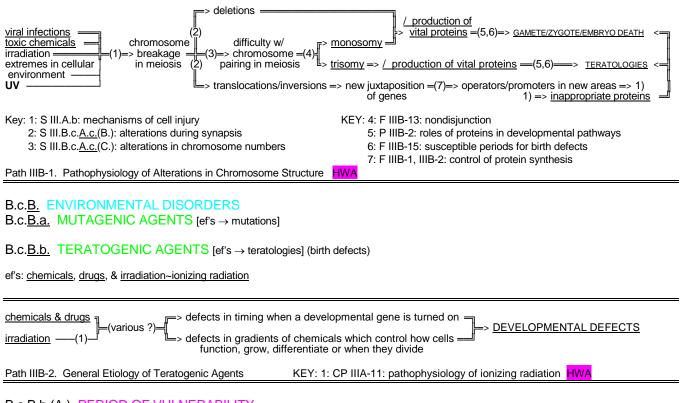
Translocations	inversions		deletions			
No problem created				fragments		
	Problem – These ca	an put product enzymes une	der the control of new ope	erators		


Figure IIIB-12. The Three Major Types of Changes in Chromosome Structure (32, p 63) TP IIIB-9

B.c.<u>A.c.</u>(C.) ALTERATIONS IN CHROMOSOME NUMBER (<u>Aneu\ploidy</u>) {G without\} B.c.<u>A.c.</u>(C.a.) NONDISJUNCTION [homologous pairs or sister chromatids don't go to opposite poles, they go to the same pole]

B.c.A.c.(C.b.) EXAMPLES

1) trisomy 21 -> Down's Syndrome; 2N = 47, up to 3 copies of genes in trisomy 21 -> too many enzyme products -??-> Down's



2) monosomy X -> Turner's Syndrome 2N = 45 [44,X\0) (no second X) male or female? 1//2500 live births, gonadal agenesis

3) polysomy X --> Klinefelter's Syndrome 2N = 47 [44,XXY] --> testicular dysgenesis [small, dysfunctional testes]

B.c.A.a.(D.) PATHOPHYSIOLOGY

ef's: <u>viral infections, toxic chemicals, ionizing radiation</u>, extremes in cellular environment, & UV Syndrome: DEATH OF GAMETE, ZYGOTE, EMBRYO, FETUS or TERATOLOGIES

B.c.<u>B.b.(A.) PERIOD OF VULNERABILITY</u>

Embryonic period in weeks											
	1	2	3	4	5	6	7	8	9		
			Centra	l nervou	s systen	n					
С				He							
0				Ear							
n				Arms							
С				Legs							
е				Eyes							
р							Tee	th			
t				Palate							
I						ernal genitalia					
0											
n	-	natal ath	Majo	Major embryological abnormalities					ological & minor ological ects		

Figure IIIB-15. Susceptible Periods During Embryonic Development when Teratogenic Agents Have Profound Effects (32, p 64) TP IIIB-11

B.c.<u>B.c.</u> CARCINOGENIC AGENTS [ef's that cause cancer] (S III.C)

B.c.<u>B.d.</u> INFECTIOUS AGENTS [ef's that cause genetic changes] (S III.C & S IV.B)